Component | AP221-01/11 | AP221-02/12 | AP221-03/13 |
TransStart® FastPfu DNA Polymerase | 250 U×1 | 500 U×1 | 500 U×6 |
5×TransStart® FastPfu Buffer | 1.2 ml×1 | 1.2 ml ×2 | 1.2 ml ×12 |
2.5 mM dNTPs | - / 500 μl×1 | - / 1 ml ×1 | - / 1 ml ×6 |
50 mM MgSO4 | 200 μl×1 | 400 μl ×1 | 1 ml ×1 |
PCR Stimulant | 200 μl×1 | 400 μl×1 | 1 ml ×1 |
6×DNA Loading Buffer | 200 μl×1 | 1 ml ×1 | 1 ml ×2 |
TransStart® FastPfu DNA Polymerase
Cat# AP221-02
Size : 500units
Brand : TransGen Biotech
TransStart® FastPfu DNA Polymerase
Catalog Number: AP221-01
Price:Please inquire first
Product Details
TransStart® FastPfu DNA Polymerase is a hot start high-fidelity DNA polymerase used for fast PCR. Offering a high amplification efficiency and high extension rate (4 kb/min, it is 8 times that of ordinary Pfu enzymes), TransStart® FastPfu DNA Polymerase amends the defects of low amplification efficiency, low yield and low extension rate (0.5 kb/min) in common Pfu polymerase, and greatly shortens reaction time.
• Offers 54-fold fidelity as compared to EasyTaq® DNA Polymerase.
• Blunt-end PCR products can be directly cloned into pEASY®-Blunt vectors.
• Amplification of genomic DNA fragment up to 15 kb.
• Amplification of plasmid DNA fragment up to 20 kb
• Hot start, high specificity.
• High amplification efficiency.
• Fast and high fidelity.
• Amplifies complex and high GC/ AT templates.
• High fidelity and fast PCR, blunt end cloning, site-directed mutagenesis.
• Amplifies long fragment.
at -20 ℃ for two years
Dry ice (-70 ℃)
1 Fan J, Ran H, Wei P L, et al. Pretrichodermamide A Biosynthesis Reveals the Hidden Diversity of Epidithiodiketopiperazines[J]. Angewandte Chemie, 2023.(IF 16.82)
2 Wang Y, Zhang S, Yang X, et al. Mesoscale DNA feature in antibody-coding sequence facilitates somatic hypermutation[J]. Cell, 2023.(IF 66.00)
3 Fan J, Ran H, Wei P L, et al. An ortho‐Quinone Methide Mediates Disulfide Migration in the Biosynthesis of Epidithiodiketopiperazines[J]. Angewandte Chemie International Edition, 2023.(IF 16.82)
4 Zong Y, Liu Y, Xue C, et al. An engineered prime editor with enhanced editing efficiency in plants[J]. Nature Biotechnology, 2022.(IF 54)
5 Lei Y, Fei P, Song B, et al. A loosened gating mechanism of RIG-I leads to autoimmune disorders[J]. Nucleic acids research, 2022.(IF 16.971)
6 Zhang H, Zhu Y, Liu Z, et al. A volatile from the skin microbiota of flavivirus-infected hosts promotes mosquito attractiveness[J]. Cell, 2022.(IF 66.85)
7 Zhang H, Li Z, Zhou S, et al. A fungal NRPS-PKS enzyme catalyses the formation of the flavonoid naringenin[J]. Nature Communications, 2022.(IF 17.694)
8 Li Y, Zhao L, Zhang Y, et al. Structural basis for product specificities of MLL family methyltransferases[J]. Molecular Cell, 2022.(IF 19.328)
9 Lei Z, Meng H, Liu L, et al. Mitochondrial base editor induces substantial nuclear off-target mutations[J]. Nature, 2022.(IF 69.50)
10 Lin Q, Jin S, Zong Y, et al. High-efficiency prime editing with optimized, paired pegRNAs in plants[J]. Nature Biotechnology, 2021.(IF 54.90)
11 Song B, Chen Y, Liu X, et al. Ordered assembly of the cytosolic RNA-sensing MDA5-MAVS signaling complex via binding to unanchored K63-linked poly-ubiquitin chains[J]. Immunity, 2021.(IF 31.74)
12 Zong Y, Liu Y, Xue C, et al. An engineered prime editor with enhanced editing efficiency in plants[J]. Nature Biotechnology, 2022.(IF 54.00)
13 Li C, Zhang R, Meng X, et al. Targeted, random mutagenesis of plant genes with dual cytosine and adenine base editors[J]. Nature biotechnology, 2020.(IF 35.72)
14 Lin Q, Zong Y, Xue C, et al. Prime genome editing in rice and wheat[J]. Nature biotechnology, 2020.(IF 31.90)
15 Wang S, Zong Y, Lin Q, et al. Precise, predictable multi-nucleotide deletions in rice and wheat using APOBEC–Cas9[J]. Nature biotechnology, 2020.(IF 36.55)
16 Chen J, Ou Y, Yang Y, et al. KLHL22 activates amino-acid-dependent mTORC1 signalling to promote tumorigenesis and ageing[J]. Nature, 2018.(IF 40.13)